From Energy Price Volatility to Macroeconomic Volatility

Gael Giraud
CNRS, PSE, CES, Labex REFI
and
Z. Kahraman, TSP

April 3, 2014
I. Energy drives GDP

\[y = 7.0399x - 15298 \]
\[R^2 = 0.9855 \]
Comparaison de la croissance du Produit Mondial Brut avec la croissance de la consommation d'énergie primaire au niveau mondial

\[y = 0,6236x + 1,245 \]
From Energy Price Volatility to Macroeconomic Volatility

Gael Giraud
CNRS, PSE, CES, Labex REFI and
Z. Kahraman,
TSP

I. Energy drives GDP
II. The trilemma
III. The curse of Volatility
- Cointegration \neq Correlation.
I. Energy drives GDP

II. The trilemma

III. The curse of Volatility

○ Long-run output elasticity of primary energy use: 0.6 - 0.7
Long-run output elasticity of energy efficiency: 0.6

- Long-run output elasticity of primary energy use: 0.6 - 0.7
- Long-run output elasticity of energy efficiency: 0.6

- Primary Energy use and GDP cointegrate. Univocal Granger causality in the long-run from Energy use growth to GDP growth.
II. The trilemma

- Giraud & Pottier (2012, 2013)

 Only 3 kinds of market equilibrium are possible. (General equilibrium with collateral constraints and money.)

 Regime 1: growth + inflation.
 (Incompatible with the eurozone inflation target.)
 Ex: the 30 Glorious Years.
II. The trilemma

- Giraud & Pottier (2012, 2013)
 Only 3 kinds of market equilibrium are possible. (General equilibrium with collateral constraints and money.)

 Regime 1: growth + inflation.
 (Incompatible with the eurozone inflation target.)
 Ex: the 30 Glorious Years.

- **Régime 2**: Deflation.
 Ex: Japan since 1993.
II. The trilemma

- Giraud & Pottier (2012, 2013)

 Only 3 kinds of market equilibrium are possible. (General equilibrium with collateral constraints and money.)

 Regime 1: growth + inflation.
 (Incompatible with the eurozone inflation target.)
 Ex: the 30 Glorious Years.

- Régime 2: Deflation.
 Ex: Japan since 1993.

- Régime 3: Speculative Bubble whose burst leads to a collapse.
 Ex: Europe since 1980... ?
Croissance, chômage et taux d'intérêts au Japon

Sources : IMF International Financial Statistics, IMF World Economic Outlook
III. The curse of Volatility

- The curse of volatility.
III. The curse of Volatility

- The curse of volatility.

figure 2

figure 3
Suppose you invest in an asset whose ROI = 4.5%. Volatility \geq 3\% \Rightarrow \text{in every trajectory, you will go bankrupt!} Although your gains follow a >0 martingale.
Suppose you invest in an asset whose ROI = 4.5%. Volatility ≥ 3% ⇒ in every trajectory, you will go bankrupt! Although your gains follow a > 0 martingale.

Suppose your cash yields 10% return per annum. Each year you toss a coin for half of your wealth. (+ 50%, -50%). Along each path, you will end up ruined.
Suppose you invest in an asset whose ROI= 4.5%. Volatility \(\geq 3\% \) \(\Rightarrow \) in every trajectory, you will go bankrupt! Although your gains follow a \(>0 \) martingale.

Suppose your cash yields 10% return per annum. Each year you toss a coin for half of your wealth. (+ 50%, -50%). Along each path, you will end up ruined.

From Energy Price Volatility to Macroeconomic Volatility

Gael Giraud
CNRS, PSE, CES, Labex REFI
and
Z. Kahraman,
TSP

I. Energy drives GDP

II. The trilemma

III. The curse of Volatility

"A Minimal Model for Human and Nature Interaction"
Motesharrei et al. (2014). Forthcoming Ecological Economics.